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Executive summary

In a collaborative effort, the Federal Aviation Administration (FAA) and The Boeing Company
are assessing bonded repair technologies of composite panels representative of transport airplane
wing structures through test and analysis using the FAA’s Aircraft Beam Structural Test (ABST)
fixture. Emphasis has been placed on investigating methods and tools used to conduct analysis
and predict structural performance of bonded repairs and those used to monitor and evaluate
repair quality and durability over the life of the part. This project was carried out in a phased
approach. Current phase 3 efforts support bonded repair size limit (BRSL) studies and methods
used to predict the limit-load residual strength for failed repair scarf configurations. Full-depth,
half-depth, and double sided scarfs were inserted in carbon-fiber-reinforced polymer (CFRP)
panels having an 18-ply quasi-isotropic layup. The panels were attached as top-side components
(e.g., skins) of a cantilevered, 24-inch-wide by 40-inch-long wingbox structure. These panels
were subjected to constant-moment loads either tested quasi-statically to failure or subjected to
fatigue before loading them to failure. The applied fatigue loading conditions simulated normal
operational strain levels for transport-category wing panels for 165,000 cycles, which is
approximately equal to three design service goals (DSGs). Results for full-depth scarf and half-
depth scarf configurations is documented in a companion technical report (DOT/FAA/TC-21-
27). This report focuses on panels with double-sided scarf configurations, where two panels had
no repair patches and three panels had single-sided repair patches representing a half-depth scarf.
In general, methods under development for BRSL residual strength predictions correlated well
with test results. At low strain survey loads, the strains in the panel with double-sided scarf and
single-sided patch were comparable to the half-depth scarf panels. However, the single-sided
repair patch was not effective in restoring strength. During residual strength tests, the repair
patch experienced early bondline failure from high peel stresses caused by bending eccentricity.
While these results provide valuable insights to the residual strength behavior of CFRP panels
with various scarf configurations, caution must be exercised in their direct application to real
structure having reinforcing substructure.
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1 Introduction

In a multiyear, multiphase research program, the FAA and The Boeing Company are working in
partnership to gain better insight into the fatigue and damage tolerance performance of adhesive-
bonded repairs and to help address issues cited in the FAA Bonded Repair Size Limits (BRSL)
policy statement (Federal Aviation Administration, 2014). Focus is on testing and analysing
bonded repairs to representative composite wing panels using the Aircraft Beam Structural Test
(ABST) fixture (Chadha, Bakuckas Jr., Fleming, Lin, & Korkosz, 2019), a new structural test
capability at the FAA William J. Hughes Technical Center. The program objectives are to
characterize the fatigue and damage tolerance performance of bonded repairs subjected to
simulated normal operational or service load (SL) conditions and to evaluate the limit-load
capability of a typical composite wing panel of transport category aircraft with a failed repair. In
addition, methods and tools used for the performance analysis and for evaluating and monitoring
repair integrity are being assessed.

Current phase 3 of this program directly supports the FAA BRSL policy issued to address
concerns of not being able to detect weak bonds that result in failure. BRSL analysis methods for
sizing bonded repairs to critical solid laminates and honeycomb panels are needed. Tests
validated such analysis methods to determine allowable repair sizes within the requirements of
BRSL policy. Test information will be useful because of the ABST fixture’s ability to produce
effects of boundary conditions and load redistribution that can be understood and incorporated
into analysis models and tools used to develop design curves. Initial phase 3 efforts focused on
limit-load characterization for half- and full-depth scarf configurations (Figure 1a and b) for
solid laminates under tension produced by constant moment. A total of four panels (panels 3-6)
were tested in phase 3, and the results are reported in (Neel R. C.-M., 2021). The benefit gained
in the residual-strength limit-load capability of a half-depth scarf was revealed in these tests. In
addition, analytical models currently under development to accurately predict the strain levels
associated with scarfs with failed repair were demonstrated.

In this current phase 3 effort, focus was on limit-load characterization for double-sided scarf
configurations for solid laminates (Figure 1c and d) under tension produced by constant moment.
Double-sided scarf configuration is being investigated to study if the backside repair patch is
sufficient to carry limit load if the top side repair fails due to complete disbonding. This technical
report addresses the challenges with the double-sided scarf configurations (panels 7 to 11), where
panels 7 and 8 had no repair patches and panels 9, 10, and 11 had single-sided repair patches
representing half-depth scarf configuration. Panels 7 and 8 were tested to study the effect of
fatigue on the residual strength of the panels with double-sided scarf configurations with no
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repair patches and panels 9, 10 and 11 were tested to characterize the limit-load capacity of the
double-sided scarf configuration with a single-sided repair patch to compare to the half-depth
scarf configuration.

Future phase 3 efforts will study fatigue and residual strength aspects for more configurations
and loading for both solid laminates and honeycomb panels. In addition, compression loading
tests and analysis are considered in the longer-term planning of this program.

Full-depth scarf Double-sided scarf
10.7" | 67"
() | Top Scarf
;LN N (c) 1 Top Se
Full depth Scarf 3 |
Ly 1 Scarf ratio 30: 1
3" Scarf ratio 30: 1
| 1
Bottom Scarf
Partial (half) -depth scarf Double-sided scarf with repair patch

" 6.7"

(b) ‘ o7 Partial (half) -depth Scarf (d) }‘ Top Scarf
‘ é&

Scatf ratio 30: 1

> |
1
racr || Ti—=

|
|
S rao 30 =————mll

Figure 1. Scarf configurations tested in phase 3

2  Experimental procedures

A description of the experimental procedures used in this program, including the test fixture,
panels, applied loads, and the inspection and monitoring methods, are outlined in this section.

2.1 Test fixture description

Testing was conducted by the FAA using the ABST fixture located at the FAA William J.
Hughes Technical Center. The ABST fixture, shown in Figure 2 was developed in collaboration
with the Boeing Company as phase 1 of this program and is capable of applying major modes of
loading to panels representative of a typical wing or stabilizer components.

A detailed, component-by-component description of the ABST fixture and supporting systems
(MTS systems) within the Structures and Materials Laboratory is provided by (Chadha,
Bakuckas Jr., Fleming, Lin, & Korkosz, 2019).



a. Full-Assembly b. Examples of Loading Modes

Wingbox
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Wing skin test panel 1
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structure
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Torsion with Shear

Figure 2. (a) ABST fixture and sub-components; (b) examples of fixture loading modes

2.2 Test specimen descriptions

The test articles fabricated by Boeing were flat composite solid laminate panels (24-in wide, 40-
in long, and 0.135-in-thick) representing typical carbon-fiber reinforced polymer (CFRP) skin
panels of wing or empennage components. An 18-ply panel was considered having a quasi-
isotropic lay-up, [£45°tabric/-45°/90°/45°/0°/-45°/90°/45°/0°]s. Panels were fabricated with a high
modulus carbon/epoxy prepreg material, a typical material used by Boeing for the composite
primary structure of commercial applications. These panels had holes machined to match the
fixture attachment points. The 24-in long ends of the panel were reinforced with doublers (end
tabs) for load introduction into the test article. These end tabs were made from the same material
and lay-up as the test panel and included a taper region with ratios of around 30:1.

In this current study, five 18-ply solid laminate panels having a double-sided scarf configuration
were tested; panels 7 and 8 with no repair patches and panels 9, 10 and 11 with single-sided
repair patches. Figure 3 shows images of the top and bottom sides of panels 7 and 8, the
schematic of the section cut A-A, and the ply layup.
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Figure 3. Panels 7 & 8 (a) top view, (b) bottom view (c) section A-A, (d) panel and scarf layups

Images of the top side and the bottom sides of panels 9, 10 and 11 are shown in Figure 4a, and b.
As seen in the figure, the image of the top side of the panel shows the scarf and the bottom side
shows the patch. In addition, Figure 4c shows the section view of the panel and Figure 4d
provides the ply layup of the panel and the patch, as well as the plies removed to fabricate the
scarfs. These three panels with single-sided repair patch were fabricated by two separate
organizations within Boeing to account for potential variations in production processes. Panels 9
and 10 were fabricated at Boeing Research and Technology-South Carolina Center and panel 11
was fabricated at Boeing Research and Technology Structural Repair Lab in Seattle,
Washington. The scarfs in all five panels had 3-inch inner dimeter and 6.7-inch outer diameter.
The detailed drawing of the panels are provided in appendix A.
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Figure 4. Panels 9, 10 & 11 (a) top view, (b) bottom view (c) section A-A, (d) panel and patch
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2.3 Applied loads and test matrix

The applied test loads used in this study represent the strains experienced by a composite wing
panel of a typical transport-category aircraft, which usually includes compression, tension, and

shear. Three loading types were considered:

1. Strain survey loads applied quasi-statically to a percentage of the SL conditions (typically
75%-100% of the SL conditions) to ensure proper load introduction into the panel.

2. Fatigue loads simulating normal operational or SL conditions during a flight cycle, the
peak of which is estimated to be 37% of the ultimate load conditions. If required,
elevated fatigue loads were used to induce damage growth (40%—-60% of the ultimate
load conditions). Fatigue loading conditions did not consider scatter.

3. Ultimate loads applied quasi-statically based on notched allowable coupons or barely
visible impact damage load-conditions.

A summary of these load configurations and the corresponding strain values is provided in Table
1. The tests covered in this report were for tensile loading conditions only.

Table 1. Strain levels used in program

Test Description

Load Type

Strains (neg)

Tension

Strain survey—75%-100% of the simulated service loads
(SL) strain conditions

Static

1,660 — 2,200




Lo Strains (ue)
Test Description Load Type Tension
i
. . . . . Cyclic

Fatigue—simulated SL conditions (37% of ultimate strains) (R=0.1) 2,200
Fatigue—elevated loads to induce damage growth (40 - Cyclic B
60% of ultimate strain) (R=0.1) 2,400 — 3,600
Residual strength (ultimate strains)— typical design Stati 6.000
ultimate loads of notched allowables atic ’

The sequence of applied loads used for panels tested are shown in Table 2. Panel 3 and 4 were
tested previously (Neel R. C.-M., 2021) and had partial (half)-depth and full-depth scarf
configurations, respectively. They are listed here for comparison purposes. Panel 7 was first
subjected to strain surveys and then loaded quasi-statically up to failure to determine the baseline
residual strength of the double-sided scarf configurations. Panel 8 was also subjected to strain
surveys and then to 3 DSG i.e., 165,000 cycle fatigue-loading intervals to determine the effect of
fatigue on post-fatigue residual strength. Panels 9, 10 and 11 were first subjected to strain
surveys and then loaded quasi-statically up to failure to determine the residual strength of the
double-sided scarf configurations with single-sided patch. All testing was conducted under
laboratory environment.

For panels 7 and 8, the failure loads were expected to be close to the failure loads of panels with
failed (cavity) full depth scarf (e.g. panel 4 in Table 2) due to similar material removal in both
configurations. For panels 9, 10 and 11 the goal was to see how well the double-sided scarf with
single-sided repair patch can restore the strength as compared to the panels with failed (cavity)
half-depth scarf (i.e. panel 3 in Table 2). The load path in half-depth scarf panel and double-
sided scarf with single-sided repair patch is similar, with a difference that in the latter scenario
due to the disrupted load path across the bondline from the parent material to the patch (Figure
5).

Table 2. Summary of applied loads

Actuator Far-
. Moment Actuator 3 | field
Test Panel | Panel | Test Description (Ibe-ft) 1&2 & 4 (Iof) Strain
(Ibf)
(ne)
Partial Predicted critical
3 169,318 | -20,117 28,445 9,000
(half) loads




Actuator

Far-

. Moment Actuator 3 | field
Test Panel | Panel | Test Description (Ibe-ft) 1&2 & 4 (Ibf) Strain
(Ibf)
(ne)
depth scarf Measured failure | 168,611 | -20,033 28,123 8,619
panel loads
Predicted critical 95,698 -11,370 16,078 3,653
Full depth
loads
scarf panel 4 )
Measured failure | 81,068 -9,632 13,620 3,125
loads
Measured failure
7 94,418 -11,218 15,862 4,958
loads
Double- i .
) Maximum fatigue
sided scarf 36,798 -4,372 6,183 2,200
Loads (R=0.1)
panels 8 )
Measured failure
95,024 -11,290 15,965 5,153
loads
Measured failure
Double-
) loads (test
sided scarf 9 92,954 -11,044 15,616 N/A
Is with stopped before
anels wi ) .
P _ final failure)
single- )
) Measured failure
sided 10 08,374 -11,688 16,527 4,815
) loads
repair :
Measured failure
patch 11 97,454 -11,578 16,374 4 580

loads
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Figure 5. Load path comparison for two types of configurations

2.4 Inspection and deformation monitoring methods

Several methods were used to monitor the deformation of the specimens throughout the duration
of the tests. Displacement sensors installed at the ends of the load application assemblies were
used to monitor the horizontal and vertical deflections of the cantilevered wing box. Strain gages
installed in the internal and external surfaces of the panel, and DIC systems situated above the
wing box were used to monitor strains in the axial, transverse, and 45-degree directions. The
strain gage map and the DIC field of view for all four panels are shown in Figure 6 and Figure 7
respectively. Detailed descriptions of these instruments are provided in (Neel, et al., 2020).

Throughout the duration of the test, several methods were utilized to monitor the initiation and
growth of damage within the CFRP specimens. For visual detection, several camera systems,
with varying specifications, were used to monitor the specimen from a multitude of
magnifications and angles. For detection of non-visual damage, flash thermography, phased
array ultrasonic, and pulse-echo ultrasonic methods were used. Additionally, a structural health
monitoring system was used intermittently. Detailed descriptions of these instruments are
provided in (Neel, et al., 2020).
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3 Analytical procedures

Boeing conducted the analysis in support of this program, as outlined in sections 3.1 and 3.2.
Finite element models (FEM) of the test fixture and test panels were created to simulate the
loading of the panel prior to actual testing and provided predictions of: (1) actuator loads that the
ABST fixture should apply to provide appropriate target strains; (2) stress and strain fields; (3)
damage initiation and growth in the composite panel, and; (4) ultimate load and residual strength.

3.1 Finite element analysis (FEA) for double-sided scarf panels

For panels 7 & 8, no repair patch was bonded to parent panels. This is a worst-case situation that
under single cure condition bondline quality is assumed to be inadequate. An advanced
progressive failure analysis (PFA) approach was used to predict the ultimate load levels for
various damaged panels in this test program. The current approach implements the Hashin in-
plane failure criteria (Hashin, 1980) and the PFA input properties were derived from analysis and
tests for the specific materials, processes and design practices. An example of a double-sided
scarf panel model at final failure point is shown in Figure 8.

£, £11 (ASSEMBLY TESTPNL SURF-1 ORI-1}
Envelope (max abs)

Figure 8. FEM axial strain contour of a double-sided scarf panel at failure

Figure 9 shows the matrix and fiber tensile failure index contours at ultimate load for the double-
sided 30:1 scarf panel (only the damaged regions were shown). The predicted failure onset load
was 11,400 Ibs for vertical actuators, correlating well with the test results shown in Table 2.
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Figure 9. The PFA approach to predict residual strength for panels 7 & 8 at the onset of final
failure

3.2 FEA for double-sided scarf panels with single-sided repair patch

One of the most significant findings during this phase of testing was that one remaining perfectly
bonded patch did not improve the residual strength at all (see results from Table 2). From a free-
body analysis under tensile loading, one can hypothesize that due to the prying moment induced
by the eccentricity from the pristine region to the scarfed region, the peel stress in the bondline
would be high and caused premature failure of the bondline and hence deemed the patch entirely
ineffective. This hypothesis was confirmed by PFA analysis of the double-sided scarf with
single-sided repair patch, panels 9 thru 11. In this model, adhesive bondline was modeled with 3-
D cohesive elements with damage initiation and progression properties derived from
fundamental tests (static tension, shear, Mode-1 & Il fracture energy measurements using double
cantilever beam (DCB) and end notch flexure (ENF) tests). Table 3 lists such properties for the
adhesive used. Figure 10 shows the adhesive failure index contour at 5300 pie and on the right
are simulated axial strain histories as a function of applied load fraction. Both the initiation of
bondline failure and final two-part failure strains at gage 1S6 (at the center of patch on the
interior side) correlate with test results very well. So is the final failure mode (Figure 11).
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Figure 10. Adhesive failure index contour at 5300 pe and the simulated SG results (1S6, 1S5 &
1S11)

Pictures
Scarf Side

Figure 11. Final failure mode correlation between test and PFA

Table 3. Adhesive properties for PFA analysis

Adhesive . . . Fracture Toughness (in-
Spec Elastic Modulus (psi) Strength (psi) Ib/in"2)

Mode | Mode Mode | Mode | Mode Mode
Mode | Mode Il Mode I | Il 1l | Il 1

BMS5-
154 500000 | 178571.4 | 178571.4 | 7400 7500 7500 2.95 17.6 17.6
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4  Results and discussion

During strain survey, fatigue, and residual strength testing of each panel, several strain
measurement techniques and NDI methods were used to monitor and assess distributions of
strain, as well as detect damage. Representative results are provided in the subsequent sections.

4.1 Double-sided scarf panels (panels 7 and 8)

Panel 7 was quasi-statically loaded to failure and panel 8 was subjected to three design service
goals (DSG) i.e. 165,000 fatigue cycles (with a load ratio of R=0.1) before quasi-statically
loading the panel to failure. The goal of these tests was to study the effect of fatigue on the
residual strength of the panels with double-sided scarfs and no patches and to study the
effectiveness of single-sided patch by comparing the residual strength of panel 7 with that of
panels 9, 10 and 11.

4.1.1 Baseline inspection and strain survey results

Both panels 7 and 8 were inspected visually and with NDI to detect any anomalies prior to
loading. Apart from a few porosity indications, nothing else was found. The panels were
subjected to initial strain surveys where they were quasi-statically loaded to yield far-field target
strains of 1800 pe. The comparison of axial strain distribution away from the scarf region and in
the vicinity of the scarf are shown in Figure 12c and d respectively. As shown in Figure 12, the
initial strain surveys revealed similar strains throughout the panel for both panels 7 and 8. During
the strain surveys it was also observed that for both the panels, matrix cracking initiated in the
middle 0° ply at very low load levels. In the absence of any material in the center of the scarf, the
first ply acted as a sharp knife edge, which caused the initial cracking. However, these cracks did
not extend beyond the first ply in the subsequent strain surveys. Figure 13 shows the matrix
cracking in the first ply of the scarf and von-Mises strains in the scarf region showing the stress
concentration due to the cracked first ply. Detailed strain gage and DIC results are provided in
appendices B and D.
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Figure 13. Panel 7 a) visual image and b) von-Mises strains, during initial strain survey
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4.1.2 Panel 7 residual strength test results

After the initial strain survey, panel 7 was subjected to residual strength test. The panel was
loaded quasi-statically in a saw-tooth profile, increasing the load level up to the predicted critical
loads of panel 4 with failed (cavity) full depth scarf (95,698 ft-Ibf), which was considered as
100%. The load profile is shown in Figure 14a. During loading, damage formation was
monitored visually using high-magnification cameras and DIC. After each loading, the scarf
region was inspected using the flash thermography system. Detailed strain gage results for all the
panels collected during residual strength tests are provided in appendix C.

The cracks at the 6 0’ clock and 12 o’ clock locations, which developed during initial strains
surveys, barely progressed till the final failure. Post-test DIC data analysis was able to detect the
slight crack progression as shown in Figure 14c. Neither thermography inspections nor visual
inspections were able to detect progression of these cracks. In addition to the 6 0’ clock and 12
o’ clock cracks, the delaminations initiated at 2 o’ clock and 8 o’ clock locations in the 5™ ply
(first 0° ply from the top). This occurred at increment 7 (90 % load level; 86,128 Ibs-ft) and is
shown in Figure 14c and d. Apart from slight progression in the above mentioned cracks and
delaminations, the scarf region remained intact all the way up to the final failure of the panel.
The panel failed catastrophically along the net section, at the applied moment of 94,418 Ib¢-ft
(Figure 14b). The images of the failed panel are shown in Figure 15. The final failure initiated
from the cracked first plies at 6 o’ clock and 12 o’ clock locations. As the load was increased, the
crack extended to the 8" ply (45° ply), and then further turning along the 45° direction going past
the 71 (90° ply) and 6 (-45° ply), all the way to the 5" ply (first 0° ply from the top). Once the 0°
ply fibers failed, damage progressed through the net section causing sudden catastrophic failure
of the panel. All these events happened in the last load step and very rapidly. Neither DIC system
nor visual cameras were able to capture the final stages of damage progression. Images of the
failed panels and flash thermography results are provided in appendices E and F.
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Figure 15. Images of failedpanel 7, a) the top side and b) bottom side, showing the scarf

4.1.3 Panel 8 fatigue at service load (SL) strain level

After the initial strain surveys, panel 8 was subjected to three DSGs, i.e. 165,000 fatigue cycles
at target maximum far-field strain of 2,200 ue (average of strain gage S1 and S3) and R=0.1. No
strain redistribution was observed during the fatigue cycles as shown by DIC and strain gage
results in Figure 16, where the strains remained relatively similar throughout fatigue. During the
tests, the panel was also inspected using a flash thermography system and the inspection results
indicted a few small delaminations at 5 o’ clock and 11 o’ clock locations (Figure 17b). These
delaminations were too small to have any effect on the durability of the scarf. In addition, the
crack in the middle ply (0° ply) along the inner edges of the scarf did not grew due to fatigue, as
shown in Figure 17. Overall, the double-sided scarf panel was able to sustain 3 DSGs without
any new damage formation or growth.
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4.1.4 Panel 8 residual strength test results

After subjecting panel 8 to 3 DSGs, a residual strength test was performed. The load increments
of the residual strength test were identical to panel 7 (Figure 14a), where the panel was loaded
quasi-statically in a saw-tooth profile, increasing the load level up to the predicted critical loads
of panel 4 with failed (cavity) full depth scarf (95,698 ft-lbf), which was considered as 100%.

Both DIC system and thermography inspections showed that at each load increment, the results
of panels 7 and 8 were very similar. The comparison of thermography and von-Mises strain
images for both the panels are shown in Figure 18 and Figure 19, respectively. Both the panels
showed minimal crack growth at the 6 0’ clock and 12 o’ clock locations, as shown in Figure 18.
The delaminations in the 5 ply (first 0° ply from the top) were at the 11 o’ clock and 5 o’ clock
locations in panel 8, as compared to the 1 0’ clock and 7 o’ clock locations in Panel 7, shown by
thermography images in Figure 18 and DIC results in Figure 19.

60% Load Level 75% Load Level 90% Load Level

a. Thermography images of the scarf region of Panel 7
60% Load Level 75% Load Level 90% Load Level

b. Thermography images of the scarf region of Panel 8
Figure 18. Thermography results in the scarf region for a) panel 7 and b) panel 8
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a. Von-Mises strains in the scarf region of Panel 7
60% Load Level 75% Load Level 90% Load Level

b. Von-Mises strains in the scarf region of Panel 8

Figure 19. Von-Mises strain in the scarf region for a) panel 7 and b) panel 8

In the last load increment, the panel failed catastrophically through the net section at the applied
moment of 95,024 Ib¢ft. This is within 1% of the failure load of panel 7 (94,418 Ib+-ft),
indicating that there is no debit in strength of panel 8 after 165,000 fatigue cycles. The damage
progression to the final failure of the panel 8 was a diagonal mirror image of panel 7. Since both
the panels were subjected to constant moment loading, the similarity in damage progression was
expected. The difference in the direction of damage progression could be due to practical
differences in the panels’ manufacturing.

4.2  Double-sided scarf panels with single-sided patch (panels 9, 10
and 11)

Three additional double-sided scarf panels with single-sided repair patch were tested. The goal of
these tests was to evaluate that how well the double-sided scarf panels with single-sided repair
patch are able to restore the strength as compared to the half-depth scarf panel 3. As mentioned
above, these three panels were fabricated by two separate organizations within Boeing to account
for potential variations in production processes. Panels 9 and 10 were fabricated at Boeing
Research and Technology-South Carolina Center and panel 11 was fabricated at Boeing
Research and Technology Structural Repair Lab in Seattle, Washington.
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4.2.1 Baseline inspection and strain survey results

All three panels were quasi-statically loaded to failure to measure the residual strength of these
panels. Prior to the residual strength tests, these panels were inspected both visually and with
NDIs to detect any anomalies. Both visual inspection and phased array inspection showed that,
as compared to panel 10 and 11, there was a slight offset in the patch and the scarf in panel 9.
The images of the offset in panel 9 are shown in Figure 20. The effect of the offset in panel 9
was noticed during the initial strain surveys where the panel was quasi-statically loaded to yield
far-field target strains of 1800ue. As shown in Figure 21b and c, the axial strain distribution in
the vicinity of the scarf in panel 9 is asymmetric, with high stress concentration on the right inner
edge of the scarf. This is the same section of scarf-patch offset as explained above. Unlike panel

9, the axial strains in the vicinity of the scarf in panel 10 and 11 were very symmetric as shown
in Figure 21d-f.

Transverse (Y)

Axial (X)
a. Panels 9, 10 and 11 schematic (external surface - scarf'side) b. Panels 9, 10 and 11 schematic (intemal surface - repair side)

Inner edge of
the scarf

Inner edge of 8
the patch :

c. Panel 9 scarf d. Panel 10 scarf

Figure 20. Images of Panels 9 and 10 showing the offset between patch and scarf in panel 9
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The offset between the scarf and the patch in panel 9 did introduce local stress concentration in
the inner edge of the scarf, but the effect of this offset was very local and did not affect the far-
field strains in the panel, as shown in Figure 22 As shown in the figure, the axial strains
measured using strain gages for panels 9, 10 and 11 were very similar for the same strain survey
load-levels. Also shown is an excellent comparison of strains between the in double-sided scarf
panel with single-sided repair patch (panels 9, 10 and 11) and half-depth scarf panel 5 during
strain survey loading. Although for panels 9, 10 and 11 the load transfer from the parent material
to the patch will not be as smooth and continuous as panel 5 due to the bondline (Figure 5), a
good bond is able to transfer the load perfectly. Thus at strain survey loads, the double-sided

scarf with single sided patch configuration works as the half-depth scarf configuration and shows
similar strain distribution.
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Figure 22. Far-field axial strains in panels 9 and 10 measured during initial strain surveys
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4.2.2 Residual strength tests

After the initial strain surveys, residual strength tests were performed to panels 9, 10 and 11. The
panels were loaded quasi-statically in a saw-tooth profile, increasing the load level up to the
predicted critical loads of panel 3 with failed (cavity) half-depth scarf (168,611 ft-1bf), which was
considered as 100%. During loading, damage formation was monitored visually using high-
magnification cameras and DIC. After each loading, the scarf and its vicinity were inspected
using thermography. For panel 9, the target of the first load increment was 60% of the half-depth
scarf panel 3 predicted critical load, but the damage was first detected visually at 35% load level
in the form of edge delamination (first 0° ply) along the scarf inner-edge, at the 3 o’clock
position. As the delamination was detected, the test was unloaded, and thermography inspection
was conducted to document the delamination. The panel was then reloaded to higher load level
and at 42% load level (72,983 ft-1bf), the patch unexpectedly failed. The test was subsequently
stopped at 55% load level (92,954 ft-lbr) to save the panel for future inspections. Since the patch
had failed, further loading the panel would have caused catastrophic failure of the panel. Figure
23 shows the schematic of loading profile, DIC results at the peak loads and thermography
results after each unloading.
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Figure 23. Panel 9 residual strength test; a) load spectrum, b) DIC, c¢) thermography results

Panels 10 and 11 were subjected to similar residual strength test. The loading profile, axial strain
distribution in the vicinity of the scarf and within the scarf just prior to panel failure measured

using the DIC system for panels 9, 10 and 11 are shown in Figure 24. As shown in the figure, the
axial strain distribution in panel 10 scarf just prior to failure was symmetric at 3’0 clock and 9° 0
clock locations, thus providing negligible indication of the path of load transfer. The panel failed
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catastrophically along the net section at 59% load level. In panel 11, the axial strains in the scarf
shows a slightly higher stress concentration at the 3’0 clock location, which indicated that the
patch is separating from the parent material at the 9’ o clock location causing the strain to rise at
the 3’0 clock location. Further, the panel failed at 58% load level. The failure was so sudden that
neither DIC nor the video cameras were able to capture the progression of failure.
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The images of failed panels 9, 10, and 11 are shown in Figure 25. In general, bondline failure of
the repair patch occurred first followed by rapid catastrophic net-section fracture of the panels.

Complete
repair failure

Failure along
the net
section

Separation
initiated at the
inner edge of the
scarf

(¢) Pancl 10 external complete failure (d) Pancl 10 internal complete failure
picture picture

Failure along
the net
section

Separation
initiated at the
inner edge of the
scarf

(¢) Panel 11 external complete failure (f) Panel 11 internal complete failure
picture picture

Figure 25. Post-failure pictures of (a,b) panel 9, (c,d) panel 10, and (e,f) panel 11
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As mentioned above, panels 10 and 11 failed catastrophically and for panel 9, the test was
stopped before complete failure to inspect the fractured surfaces. The images of the fractured
panel 9 bondline is shown in Figure 26.
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c. Pictures of the failed surface of the scarf and the patch

Figure 26. Post-test visual inspection of failed panel 9 (repair patch side)

The pictures of the interface between the patch and scarf shows the bondline failure and
separation between the patch from the parent material and thus transferring the load to the net
section leading to the catastrophic failure of the panel.

The bondline failure can be explained via Figure 27. As shown in the figure, a single-sided repair
patch resulted in an eccentrically loaded moment and higher peel stresses causing the bondline
failure. It should be mentioned that there was no substructure in these panels. The presence of
stringers would have reduced the eccentricity and peel stresses on the bond by transferring more
load on the stringer and reducing the prying moment.
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—

b. Section view of the panel showing the prying moment

Figure 27. Schematics showing the prying moment induced by the eccentricity

The load transfer leading up to the failure of the panel can be studied by the strain gage results.
As an example axial strains measured prior to and during repair failure for panel 10 are shown in
Figure 28. As shown in Figure 28c, during the repair failure the strains at the ends of the panel
reduced (strain gages S1, S3, S8 and I1S1, 1S3, IS8) but the strains in the net section increased
significantly (strain gages S4, S7 and 1S4, 1S7) indicating the load transfer to the net section of
the panel. The strains in the vicinity of the patch (strain gages IS5, 1S9, 1S11 and 1S12) shown in
Figure 28d also rise significantly due to the load transfer. Figure 28d also shows the strains at the
patch edge at 9 o’ clock position (IS9) were slightly higher than at 3 o’ clock position (IS12)
indicating the failure initiated from the 9 o’ clock position, which was confirmed by visual
inspection of the panel after failure. Overall, the strain gages were able to capture the load
transfer prior to the panel failure.
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Figure 28. Panel 10 axial strains captured just before and during the repair failure

4.3 Comparison of the residual strength of all the panels (panels 7 - 11)

The goal of panels 7 and 8 tests was to study the effect of fatigue on the residual strength of the
panels with double-sided scarfs without any patches. For panels 9, 10 and 11 test, the target was
to measure the effectiveness of panels with double-sided scarfs that are partially repaired (single-
sided patch) in restoring the strength when compared to the panels with half-depth scarfs. In
order to compare the effectiveness, the strengths of panels 7 -11 are plotted in Figure 29. These
strengths are normalized by the strength of an open-hole panel tested in phase 2 (Neel, et al.,
2020). In addition, the figure also shows the normalized strength of panels with half-depth scarf
(panels 3 and 5) and full-depth scarf (panels 4 and 6) tested in phase 3 (Neel R. C.-M., 2021). As
seen in the figure, the strength of panels 9, 10, and 11 was similar to that measured in panels 7
and 8, indicating that within the scope of this research, the single-sided patch was not effective at
all in restoring strength. Bondline failure of the repair patch occurred in panels 9 — 11 at the same
load level as net section failure observed for the double-sided scarf panels 7 and 8. In addition,
the comparison of strengths of panels 9, 10, and 11 with half-depth scarf panels 3 and 5 shows
the inability of the single-sided repair patch to be as effective as panel with half-depth scarf. The
strength of panel 8 as compared to panel 7 shows that subjecting the panel with double-sided
scarf to 3 DSGs had no effect on its residual strength.
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Figure 29. Comparison of strength of all the panels

4.4  Summary

In a joint effort, The Federal Aviation Administration and The Boeing Company are addressing
safety and structural integrity issues of bonded repair technology. Recent efforts have focused on
bonded repairs to composite panels representative of typical transport aircraft wing structure.
The program objectives are to characterize the fatigue and damage tolerance performance of
bonded repairs subjected to simulated service load and to evaluate the limit-load capability of
typical composite wing panels with a failed repair. Emphasis has been placed on investigating
the methods and tools used for predicting structural performance of repairs and as those used to
evaluate and monitor repair integrity over the life of the part.

A phased approach is being undertaken in the multiyear effort. The initial baseline testing (phase
2) of this program characterized the material response of composite panels in the unnotched
pristine and open-hole configurations under constant moment loading. This verified the test-
fixture loading, validated analysis models, and provided an initial reference point for NDI and
SHM systems.

The third phase of this program characterized the limit-load capability for partial (half)-depth,
full-depth and both side half-depth scarf configurations for solid laminates under tension
produced by constant moment. The benefit gained in the residual-strength limit-load capability
of a failed half-depth scarf was revealed and documented in the first technical report of this
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phase (Neel R. C.-M., 2021). For both half-depth scarf and full-depth scarf configurations, there
was no debit in strength due to 3 DSGs. In addition, analytical models currently under
development to accurately predict the strain levels associated with failed repair depth were
demonstrated.

This report documents additional work in phase 3 considering double-sided scarfs with and
without single-sided patch configurations for solid laminates under tension produced by constant
moment. Benefits realized by double-sided scarfing include less material removal, a smaller
repair footprint and consequently a slightly higher residual strength compared to a full-depth
scarf configuration. As with the full-depth and half-depth scarfs, there was no debit in strength
after fatigue load application of 3 DSGs. At low load levels, the single-sided repair patch in a
double-sided scarf was effective in restoring load transfer similar to that observed in the half-
depth scarf panel. However, results show that a single-sided repair patch in a double-sided scarf
tested in this program cannot be credited for restoring the strength of the panel. Bondline failure
of the repair patch occurred at the same load level as net section failure for the double-sided scarf
configurations due to high peel stresses induced by bending eccentricity. It should be noted that
these experiments were limited to 18-ply CFRP panels without any stiffening sub-structure,
which does not represent an actual configured wing panel. For such structure, the stiffening
elements (stringers, ribs, etc.) would in many cases react most of the bending moment, thus
mitigating the effect of any eccentricity within the panel. While these results provide valuable
insights to the residual strength behavior of CFRP panels with various scarf configurations,
caution must be exercised in their direct application to real structure.
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A Specimen Engineering Drawings
INTRODUCTION

Provided in this appendix are detailed drawings of the pristine and open-hole panels.

SPECIMEN ENGINEERING DRAWINGS

Detailed drawings of the double-sided scarf without repair (Panel 7 and Panel 8) is provided in
Figure A-1, a drawing of the repair patch is provided in Figure A-2, and an assembly drawing of
the double sided scarf with a repair patch (Panels 9-11) is provided in Figure A-3.
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Figure A-1 Drawing of the double-sided scarf specimen without repair
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B  Strain and Displacement During Strain Surveys
INTRODUCTION

Provided in this appendix are strain gages results captured during quasi-static loading of the
double-sided scarf panel specimens.

STRAIN SURVEY RESULTS

The location and nomenclature for displacement sensors and strain gages for the panels are
shown in Figure B-1 and Figure B-2, respectively. For Panel 7, all the strain and displacement
measurements collected at O cycles are shown in Figures B-3 — B-4. For Panel 8, the strain
survey results for from 0 — 165,000 cycles are shown in Figures B-5 — B-34. For Panel 9, Figures
B-35 — B-36. For Panel 10, Figures B-37 — B-38. For Panel 11, Figures B-39 — B-40.
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Figure B-1. Images displaying the (Elsevier) displacement transducer positions
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CFRP Panel 7— Double-Sided Scarf— Strain Survey Results
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Figure B-3. Panel 7: baseline strain survey (axial strain)
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CFRP Panel 7- Double-Sided Scarf— Strain Survey Results
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Figure B-4. Panel 7: baseline strain survey (non-axial strain and displacement)

B-4



CFRP Panel 8— Double-Sided Scarf; 0 Cycles —Strain Survey Results
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Figure B-5. Panel 8 (fatigue at SL strain level): strain survey at 0 cycles (axial strain)



CFRP Panel 8— DoubleSided Scarf; 0 Cycles— Strain Survey Results
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CFRP Panel 8 —Double-Sided Scarf: 12,000 Cycles— Strain Survey Results
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Figure B-7. Panel 8 (fatigue at SL strain level): strain survey at 12,000 cycles (axial strain)



CFRP Panel 8 -DoubleSided Scarf; 12,000 Cycles — Strain Survey Results
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Figure B-8. Panel 8 (fatigue at SL strain level): strain survey at 12,000 cycles (non-axial strain



CFRP Panel 8 Double-Sided Scarf; 24,000 Cvcles— Strain Survey Results
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Figure B-9. Panel 8 (fatigue at SL strain level): strain survey at 24,000 cycles (axial strain)



CFRP Panel 8— DoubleSided Scarf; 24,000 Cycles —Strain Survey Results

(a) External 45° Strain Gages (b) Internal 45° Strain Gages Peak
Moment
700 . 1200 (Ib-ft)
600 *
* 1000 ® 36,797
< 500 s = ¢
g ¥ 800 @
= 400 $ < ° Target Far-
Z & £ 600 . ¢ . ® ¢ field strain
300 - .
. 8 400 o 4 S 10.
& 200 . P o, ®
2 100 o b 200 P 2,200 pe
9 o & ¢ ¢ o *
0 ¢ ¢ o @
0 Runs
0 10 20 30 40 0 10 20 30 40 -
-100 _ : -200 . ,
Applied Moment (kip -ft) Applied Moment (kip -ft) 3
(c) External Transverse Strain Gages ~ (d) Internal Transverse Strain Gages [ eoend
0e 0 & IS5°
0og 10 20 30 40 400 0 & 10 20 30 40 A T
-100 g AT AISS
o [ ] i -200 A ﬁ A & 1890
= 200 e 2 300 A0, T
£ . < &z $ 44 A IS9
Ju ° S a00
% 300 .. 7 AP * IS1P
s $ -s00 A
g ® e g A A ISI10T
3 .400 4 & .600 s 1S12°
g ) o
= ® ' = -700 A T
-500
. 800 A IS12
-600 900 * S10°
Applied Moment (kip-ft) Applied Moment (kip-ft) T
® S10
(e) Vertical Displacement Transducers  (f) Horizontal Displacement Transducer * Dl
om 0.08 X D2
0 I [ | 194 . 20 30 40 0.07 [ ® D3H
-0.2 B = -
N B B g < 006 m m D3V
£ 04 B " = 0.05 [
- a
5 [ | E 0.04 ]
E 06 [ | ®
3 5 5 0.03 -]
%08 % 0 0.02 B
(a]
[ | 0.01 H EHE
1 =
0m B B
p 0 10 20 30 40
’ Applied Moment (kip -ft) Applied Moment (kip -ft)

Figure B-10. Panel 8 (fatigue at SL strain level): strain survey at 24,000 cycles (non-axial strain
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CFRP Panel 8 -Double-Sided Scarf; 36,000 Cvycles — Strain Survey Results
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Figure B-11. Panel 8 (fatigue at SL strain level): strain survey at 36,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 36,000 Cvcles —Strain Survey Results
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Figure B-12. Panel 8 (fatigue at SL strain level): strain survey at 36,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 48.000 Cycles— Strain Surveyv Results
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Figure B-13. Panel 8 (fatigue at SL strain level): strain survey at 48,000 cycles (axial strain)
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CFRP Panel 8— Double-Sided Scarf; 48.000 Cycles —Strain Survey Results
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Figure B-14. Panel 8 (fatigue at SL strain level): strain survey at 48,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 60,000 Cycles— Strain Survey Results
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Figure B-15. Panel 8 (fatigue at SL strain level): strain survey at 60,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 60,000 Cycles —Strain Survey Results
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Figure B-16. Panel 8 (fatigue at SL strain level): strain survey at 60,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 72,000 Cycles — Strain Survey Results
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Figure B-17. Panel 8 (fatigue at SL strain level): strain survey at 72,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf: 72,000 Cvycles —Strain Survey Results
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Figure B-18. Panel 8 (fatigue at SL strain level): strain survey at 72,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 84.000 Cvycles — Strain Survey Results
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Figure B-19. Panel 8 (fatigue at SL strain level): strain survey at 84,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 84,000 Cycles —Strain Survey Results
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Figure B-20. Panel 8 (fatigue at SL strain level): strain survey at 84,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 —Double-Sided Scarf; 96,000 Cycles — Strain Survey Results
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Figure B-21. Panel 8 (fatigue at SL strain level): strain survey at 96,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 96.000 Cycles —Strain Survey Results

(a) External 45° Strain Gages (b) Internal 45° Strain Gages Peak
Moment
700 . 1200 (bfﬁ)
600 ®
= . 1000 ® 36,797
2500 s =
= g 300 ®
& 400 s < ° . Target Fa.r
2 s £ 600 ¢ * field strain
8 300 s @ ¢ —_—
% R © 400 ¢ o ¢ S 10.
2 200 g AP
¢* ;
~ 100 . w200 f ¢ 2,200 pe
0 g $ § ¢ o ¢ ¢ & & @
0 ¢ Runs
0 10 20 30 40 0 10 20 30 40 —_—
Applied Moment (kip -ft) 200 Applied Moment (kip -ft) 3
(¢) External Transverse Strain Gages (d) Internal Transverse Strain Gages [ egend
oe 04 & IS5°
0§ 10 20 30 40 1000 & 10 20 30 40 : T
-100 ‘ A A . a8 ISS
B s E sty ® 1597
< 200 H < 3% A %444 A IS9T
s e £ -400 &ty
z 300 ° ﬁ & ’ IS].(P
5 H % 500 4 A .
[7] Q
% 400 H % 600 & A A IS10
2 H £ 00 IS12°
500 ] A T
. 200 A 1S12
-600 , A -900 A . * S10°
Applied Moment (kip -ft) Applied Moment (kip -ft)
* S10T
(e) Vertical Displacement Transducers (f) Horizontal Displacement Transducer ™ D1
0 m 0.08 w D2
o m N 16y . 20 30 40 0.07 EE ® D3H
02 B L
_ g L 00 = m D3V
£ 04 7 L = 0.05 ]
e [T
5 | £ 0.04 =
§ 06 [ | ®
g ) 5003 ]
208 [} 8 0.02 o OE
o
[ | 0.01 HOE E
1 =
Om W ®
0 10 20 30 40
12

Applied Moment (kip -ft)

Applied Moment (kip-ft)

Figure B-22. Panel 8 (fatigue at SL strain level): strain survey at 96,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf: 108,000 Cycles —Strain Survey Results
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Figure B-23. Panel 8 (fatigue at SL strain level): strain survey at 108,000 cycles (axial strain)
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CFRP Panel 8— Double-Sided Scarf; 108,000 Cvcles —Strain Survey Results
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Figure B-24. Panel 8 (fatigue at SL strain level): strain survey at 108,000 cycles (non-axial

strain and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 120,000 Cycles —Strain Survey Results
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Figure B-25. Panel 8 (fatigue at SL strain level): strain survey at 120,000 cycles (axial strain)
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CFRP Panel 8— Double-Sided Scarf; 120,000 Cycles —Strain Survey Results
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Figure B-26. Panel 8 (fatigue at SL strain level): strain survey at 120,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 132.000 Cvcles —Strain Survey Results
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Figure B-27. Panel 8 (fatigue at SL strain level): strain survey at 132,000 cycles (axial strain)

B-27



CFRP Panel 8— DoubleSided Scarf; 132.000 Cycles —Strain Survey Results
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Figure B-28. Panel 8 (fatigue at SL strain level): strain survey at 132,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 144,000 Cvycles —Strain Survey Results
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Figure B-29. Panel 8 (fatigue at SL strain level): strain survey at 144,000 cycles (axial strain)
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CFERP Panel 8— DoubleSided Scarf; 144,000 Cycles —Strain Survey Results
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Figure B-30. Panel 8 (fatigue at SL strain level): strain survey at 144,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8 -Double-Sided Scarf; 156,000 Cvcles —Strain Survey Results
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Figure B-31. Panel 8 (fatigue at SL strain level): strain survey at 156,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 156,000 Cvcles —Strain Survey Results
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Figure B-32. Panel 8 (fatigue at SL strain level): strain survey at 156,000 cycles (non-axial strain
and displacement)
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CFRP Panel 8- Double-Sided Scarf: 165,000 Cvycles —Strain Survey Results

(a) External X-Axis Strain Gages (b) Internal X-Axis Strain Gages  Peak
Moment
2500 1800
1600 = (Ibft)
2000 1400 . 36,797
L ] b
) [ ] < 1200 0
Ej: 1500 s ° = 1000 B Target Far-
€ 1000 s’ £ 800 | field strain
bl [ & |
T oo o T 600 M 5B S10.
% 0 < 400 - g 8=
0 .
0 e 200 m B 2,200 HE
0
500 ? 1P i T Ny 200 O 10 20 30 s Runs
Applied Moment (kip-ft) Applied Moment (kip -ft) 3
(c) External Y-Axis Strain Gages (d) Internal Y-Axis Strain Gages | coend
3000 3000
. . . " mISI
2500 2500 L
e | IS2
]
22000 . e . ® T 2000 - B . ol = 1S3
% 1500 e 0 ¢ %1500 . = ! i W 1S4
% 1000 o ® % 1000 — 1 IS5
K o] gz O
< 500 . e 9 < 500 : L m IS7
n .
0e 0om W IS8
0 10 20 30 40 0 10 20 30 40 M 1S9
-500 : . -500 ; ;
Applied Moment (kip -ft) Applied Moment (kip -ft) ®IS10
m [S]1
(e) External Off-Axis Strain Gages (f) Internal Off-Axis Strain Gages IS12
2500 2500
: * S1
2000 s 2000 = )
¢ ]
g 1500 . ¢ T 1500 - g *S3
£ ) £ = ® S4
£ 1000 [ £ 1000 B
g . = . ¢ 87
% 500 e % 500 . ® S8
° n
0e om ® S10
0 10 20 30 40 0 10 20 30 0 o
-500 -500 S11
Applied Moment (kip -ft) Applied Moment (kip -ft)

Figure B-33. Panel 8 (fatigue at SL strain level): strain survey at 165,000 cycles (axial strain)
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CFRP Panel 8— DoubleSided Scarf; 165,000 Cvycles —Strain Survey Results
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Figure B-34. Panel 8 (fatigue at SL strain level): strain survey at 165,000 cycles (non-axial strain
and displacement)
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CFRP Panel 9 —Double-Sided Scarf with Single Sided Patch —Strain Survey Results

(a) External X-Axis Strain Gages

2000
1800
1600 °
1400 °
1200 g
1000 |

800 L

600

)

e
[

Axial Strain (p

0 10 20 30
Applied Moment (kip -ft)

(c) External Y-Axis Strain Gages

2000
1800 .
1600 * .
7 1400 L g’
1200 '
1000
800 .
600 ‘ |
400 .
200 @
0oe
0 10 20 30
Applied Moment (kip -ft)

40

Axial Strain (u

40

(e) External Off-Axis Strain Gages
1800
[ ]
1600 ' [ ]
1400 '
1200 l
1000 |
800 '
600
400 ®
200 @
0o®
200 0

Axial Strain (pe

10 20 30
Applied Moment (kip -ft)

40

(b) Internal X-Axis Strain Gages Peak
Moment
3000 (Ibi-ft)
2500 - . 30,157
%2000 C . Target Far-
T 1500 . B - field strain
£ 1000 - S10.
<C = B
500 a 2,200 pe
O
0@ Runs
0 10 20 30 40
Applied Moment (kip -ft) 3
(d) Internal Y-Axis Strain Gages | e¢gend
2000 B [S)
1800 5
1600 . = IS2
@ 1400 2l W IS3
= 1200 80
£ E g W IS4
£ 1000 . |
= 800 g i BISs
% 600 s O IS6
400 "B
200 m W 1S7
ou W sg
0 10 20 30 40
Applied Moment (kip -ft) | IS9
m [S10
(f) Internal Off-Axis Strain Gages ™ IS11
1800 15;12
1600 o
1400 i " ¢ SI
- 1200 I S2
< 1000 i : . g3
£ 800 i
g : © 54
2 400 = © S7
200 g . * S8
om
200 0 10 20 30 Mo ® 510
Applied Moment (kip -ft) * Q11

Figure B-35. Panel 9: baseline strain survey (axial strain)
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CFRP Panel 9— Double-Sided Scarf with Single -Sided Patch — Strain Survey Results
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Figure B-36. Panel 9: baseline strain survey (non-axial strain and displacement)
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CFRP Panel 10 -Double-Sided Scarf with Single -Sided Patch — Strain Survey Results
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Figure B-37. Panel 10: baseline strain survey (axial strain)
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CFRP Panel 10— Double-Sided Scarf with Single - Sided Patch — Strain Survey Results
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Figure B-38. Panel 10: baseline strain survey (non-axial strain and displacement)
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CFRP Panel 11 —Double-Sided Scarf with Single -Sided Patch — Strain Survey Results
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Figure B-39. Panel 11: baseline strain survey (axial strain)
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CFRP Panel 11— Double-Sided Scarf with Single -Sided Patch — Strain Survey Results
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Figure B-40. Panel 11: baseline strain survey (non-axial strain and displacement)

B-40



C  Strain and Displacement During Residual Strength Test
INTRODUCTION

Provided in this appendix are strain gages results captured during residual strength loading of the
open-hole panel specimen.

RESIDUAL STRENGTH RESULTS

Figures C-1 - C36, C-37 — C-72, C-73 — C-80, C-81 — C-84, C-85 — C-92 show the applied
loads, displacement, and axial, transverse, and 45-degree strain results at each load increment of
the residual strength test of Panels 7, 8, 9, 10 and 11 respectively. These load increments were
based on the percentage of predicted critical load (PCL) and include 60%, 66%, 70%, 75%, 80%,
85%, 90%, 95% of PCL and final failure loads for Panels 7 and 8, 35% and 55% for Panel 9,
final failure (59%) for Panel 10, and 39% and final failure (57%) of Panel 11.
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-1. Panel 7 load increment 1 (60% load level), load and displacement



CFRP Panel 7 — Results of SG & SPDT., Residual Strength Test Sequence #1

(a) Axial Strains, External X-Axis Strain Gages Peak
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Figure C-2. Panel 7 load increment 1 (60% load level), axial strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-3. Panel 7 load increment 1 (60% load level), 45-degree strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-4. Panel 7 load increment 1 (60% load level), transverse strain



CFRP Panel 7 — Results of SG & SPDT. Residual Strength Test Sequence #2

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-5. Panel 7 load increment 2 (66% load level), load and displacement



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #2

(a) Axial Strains. External X-Axis Strain Gages

6000
5000
4000
m
2
c 3000
©
£ 2000
.
>
<
1000
0 — —]
0 50 100 150 200 250
-1000
Time (seconds)
—S1:MON1 —S2:MON1 S3:MON1 S4:MON1
S7:MON1 S8:MON1 —S10-A:MON1—S11:MON1
(b) Axial Strains, Internal X-Axis Strain Gages
6000
5000
T 4000
=
£ 3000
[ ¥}
©
%< 2000
<
1000
0
0 50 100 150 200 250
Time (seconds)
—IS1:MON1 IS2:MON1 1S3:MON1 1S4:MON1
IS5-A:MON1 —IS7:MON1 —IS8:MON1 —I1S9-A:MON1
—I[IS10-A:MON1—IS11:MON1 —IS512-A:MON1

300

300

Figure C-6. Panel 7 load increment 2 (66% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #2

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-7. Panel 7 load increment 2 (66% load level), 45-degree strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #2
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Figure C-8. Panel 7 load increment 2 (66% load level), transverse strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-9. Panel 7 load increment 3 (70% load level), load and displacement



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) Axial Strains. External X-Axis Strain Gages Peak
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Figure C-10. Panel 7 load increment 3 (70% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #3
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Figure C-11. Panel 7 load increment 3 (70% load level), 45-degree strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #3
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Figure C-12. Panel 7 load increment 3 (70% load level), transverse strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #4
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Figure C-13. Panel 7 load increment 4 (75% load level), load and displacement
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #4
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Figure C-14. Panel 7 load increment 4 (75% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #4
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Figure C-15. Panel 7 load increment 4 (75% load level), 45-degree strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #4
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Figure C-16. Panel 7 load increment 4 (75% load level), transverse strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #5
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Figure C-17. Panel 7 load increment 5 (80% load level), load and displacement



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #5

(a) Axial Strains. External X-Axis Strain Gages Peak
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Figure C-18. Panel 7 load increment 5 (80% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #5
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Figure C-19. Panel 7 load increment 5 (80% load level), 45-degree strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #5

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-20. Panel 7 load increment 5 (80% load level), transverse strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #6
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Figure C-21. Panel 7 load increment 6 (85% load level), load and displacement

C-22



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #6
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Figure C-22. Panel 7 load increment 6 (85% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-23. Panel 7 load increment 6 (85% load level), 45-degree strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-24. Panel 7 load increment 6 (85% load level), transverse strain

C-25



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-25. Panel 7 load increment 7 (90% load level), load and displacement
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #7

Axial Strain (pe)
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Figure C-26. Panel 7 load increment 7 (90% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-27. Panel 7 load increment 7 (90% load level), 45-degree strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-28. Panel 7 load increment 7 (90% load level), transverse strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-29. Panel 7 load increment 8 (95% load level), load and displacement

C-30



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) Axial Strains. External X-Axis Strain Gages Peak
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Figure C-30. Panel 7 load increment 8 (95% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) 45-Deegree Strains, External 45- Deoree Strain Gages Peak
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Figure C-31. Panel 7 load increment 8 (95% load level), 45-degree strain



CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-32. Panel 7 load increment 8 (95% load level), transverse strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-33. Panel 7 load increment 9 (98% load level), load and displacement
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) Axial Strains. External X-Axis Strain Gages Peak
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Figure C-34. Panel 7 load increment 9 (98% load level), axial strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-35. Panel 7 load increment 9 (98% load level), 45-degree strain
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CFRP Panel 7 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) Transverse Strains, External Transverse Strain Gages Peak
0 Moment
0 50 100 150 200 250 300 350 (Ib-ft)
94,093
-500 Percent
‘g Predicted
= Critical
T ~1000 Load (%)
Lé,,j 98
g 1500 SEQ
E 9
= Legend
-2000 .
= 810!
-2500 _ IS5T
Time (seconds) —1S9T
—S10-T:MON1 =1s10T
= T
(b) Transverse Strains, Internal Transverse Strain Gages 1512
3000
2000
U
= 1000
=
©
‘é’ 0
E 0 50 00 250 300 350
(7]
E -1000
|_
-2000
-3000

Time (seconds)

IS5-T:MON1 —IS9-T:MON1 —IS10-T:MON1 —IS12-T:MON1

Figure C-36. Panel 7 load increment 9 (98% load level), transverse strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-37. Panel 8 load increment 1 (60% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) Axial Strains, External X-Axis Strain Gages
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Figure C-38. Panel 8 load increment 1 (60% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT. Residual Strength Test Sequence #1

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-39. Panel 8 load increment 1 (60% load level), 45-degree strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-40. Panel 8 load increment 1 (60% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #2

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-41. Panel 8 load increment 2 (66% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #2

(a) Axial Strains, External X -Axis Strain Gages Peak
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Figure C-42. Panel 8 load increment 2 (66% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT. Residual Strength Test Sequence #2

(a) 45-Deeree Strains, External 45- Degree Strain Gages Peak
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Figure C-43. Panel 8 load increment 2 (66% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #2

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-44. Panel 8 load increment 2 (66% load level), transverse strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-45. Panel 8 load increment 3 (70% load level), load and displacement

C-46



CERP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) Axial Strains, External X-Axis Strain Gages Peak
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Figure C-46. Panel 8 load increment 3 (70% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) 45-Degree Strains, External 45- Degree Strain Gages Peak
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Figure C-47. Panel 8 load increment 3 (70% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #3

(a) Transverse Strains, External Transverse Strain Gages Peak
0 Moment
50 100 150 200 250 300  (Ibgft)
-200 67.005
_-400 Pertfent
0 Predicted
; -600 Critical
© Load (%)
‘;; -800 70
o SEQ
% -1000
= 3
(1]
=
-1200 Legend
—_ T
-1400 S10
-1600 IS5T
Time (seconds) = 1S9T
—S10-T:MON1 =IS10T
— T
(b) Transverse Strains, Internal Transverse Strain Gages IS12
1000
500
o)
=2 0
g 300
E -500
o
s
< -1000
=
-1500
-2000

Time (seconds)

IS5-T:MON1 —IS9-T:MON1 —IS10-T:MON1 —IS12-T:MON1

Figure C-48. Panel 8 load increment 3 (70% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #4
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Figure C-49. Panel 8 load increment 4 (75% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #4

(a) Axial Strains, External X -Axis Strain Gages Peak
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Figure C-50. Panel 8 load increment 4 (75% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #4

(a) 45-Depree Strains, External 45- Degree Strain Gages Peak
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Figure C-51. Panel 8 load increment 4 (75% load level), 45-degree strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #4

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-52. Panel 8 load increment 4 (75% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #5

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-53. Panel 8 load increment 5 (80% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #5
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Figure C-54. Panel 8 load increment 5 (80% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #5

(a) 45-Degree Strains, External 45- Degree Strain Gages Peak
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Figure C-55. Panel 8 load increment 5 (80% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #5

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-56. Panel 8 load increment 5 (80% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-57. Panel 8 load increment 6 (85% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) Axial Strains, External X -Axis Strain Gages Peak
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Figure C-58. Panel 8 load increment 6 (85% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) 45-Degree Strains, External 45- Deeree Strain Gages Peak
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Figure C-59. Panel 8 load increment 6 (85% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #6

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-60. Panel 8 load increment 6 (85% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #7
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Figure C-61. Panel 8 load increment 7 (90% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) Axial Strains, External X -Axis Strain Gages Peak
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Figure C-62. Panel 8 load increment 7 (90% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) 45-Deeree Strains, External 45- Degree Strain Gages Peak
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Figure C-63. Panel 8 load increment 7 (90% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #7

(a) Transverse Strains. External Transverse Strain Gages Peak
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Figure C-64. Panel 8 load increment 7 (90% load level), transverse strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #8
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Figure C-65. Panel 8 load increment 8 (95% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) Axial Strains, External X -Axis Strain Gages Peak
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Figure C-66. Panel 8 load increment 8 (95% load level), axial strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #8

(a) 45-Degree Strains, External 45- Degree Strain Gages Peak
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Figure C-67. Panel 8 load increment 8 (95% load level), 45-degree strain
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CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #8

{a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-68. Panel 8 load increment 8 (95% load level), transverse strain



CFRP Panel 8 — Results of SG & SPDT. Residual Strength Test Sequence #9

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-69. Panel 8 load increment 9 (100% load level), load and displacement
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CFRP Panel 8 — Results of SG & SPDT. Residual Strength Test Sequence #9
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Figure C-70. Panel 8 load increment 9 (100% load level), axial strain

C-71



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) 45-Deeree Strains, External 45- Degree Strain Gages Peak
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Figure C-71. Panel 8 load increment 9 (100% load level), 45-degree strain



CFRP Panel 8 — Results of SG & SPDT, Residual Strength Test Sequence #9

(a) Transverse Strains, External Transverse Strain Gages Peak
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Figure C-72. Panel 8 load increment 9 (100% load level), transverse strain
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) Individual Loads & Resultant Moments Generated by Actuators Peak
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Figure C-73. Panel 9 load increment 1 (35% load level), load and displacement
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) Axial Strains, External X-Axis Strain Gages Peak
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Figure C-74. Panel 9 load increment 1 (35% load level), axial strain
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) 45-Degree Strains, External 45- Degree Strain Gages Peak
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Figure C-75. Panel 9 load increment 1 (35% load level), 45-degree strain
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-76. Panel 9 load increment 1 (35% load level), transverse strain

C-77



CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1A
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Figure C-77. Panel 9 load increment 1a (55% load level), load and displacement
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1A
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Figure C-78. Panel 9 load increment 1a (55% load level), axial strain
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1A
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Figure C-79. Panel 9 load increment 1a (55% load level), 45-degree strain
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CFRP Panel 9 — Results of SG & SPDT, Residual Strength Test Sequence #1A
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Figure C-80. Panel 9 load increment 1a (55% load level), transverse strain
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CFRP Panel 10 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-81. Panel 10 load increment 1 (59% load level), load and displacement
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CFRP Panel 10 — Results of SG & SPDT, Residual Strength Test Sequence #2
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Figure C-82. Panel 10 load increment 1 (59% load level), axial strain
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CFRP Panel 10 — Results of SG & SPDT. Residual Strength Test Sequence #1
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Figure C-83. Panel 10 load increment 1 (59% load level), 45-degree strain
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CFRP Panel 10 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C-84. Panel 10 load increment 1 (59% load level), transverse strain
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CFRP Panel 11 — Results of SG & SPDT, Residual Strength Test Sequence #1
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Figure C- 85. Panel 11 load increment 1 (29% load level), load and displacement
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CFRP Panel 11 — Results of SG & SPDT. Residual Strength Test Sequence #1
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Figure C-86. Panel 11 load increment 1 (29% load level), axial strain
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CFRP Panel 11 — Results of SG & SPDT, Residual Strength Test Sequence #1

(a) 45-Degree Strains, External 45-Degree Strain Gages
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Figure C-87. Panel 11 load increment 1 (29% load level), 45-degree strain
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CFRP Panel 11 — Results of SG & SPDT. Residual Strength Test Sequence #1
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Figure C-88. Panel 11 load increment 1 (29% load level), transverse strain
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CFRP Panel 11 — Results of SG & SPDT. Residual Streneth Test Sequence #2
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Figure C- 89. Panel 11 load increment 2 (57% load level), load and displacement
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CFRP Panel 11 — Results of SG & SPDT, Residual Strenoth Test Sequence #2
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Figure C-90. Panel 11 load increment 2 (57% load level), axial strain
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CFRP Panel 11 — Results of SG & SPDT, Residual Strength Test Sequence #2
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Figure C-91. Panel 11 load increment 2 (57% load level), 45-degree strain
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CFRP Panel 11 — Results of SG & SPDT. Residual Strength Test Sequence #2
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Figure C-92. Panel 11 load increment 2 (57% load level), transverse strain
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D Digital Image Correlation Results

3D DIC is a non-contact, material-independent NDI method capable of utilizing sequential
digital images of a specimen subjected to mechanical loading to measure in-plane deformation
and strain, and in and out-of-plane displacements. Throughout the duration of the tests described
herein, 5M ARAMIS 3D DIC systems were used to monitor strains exhibited in the central test
sections of the panels during quasi-static strain surveys. Each 5M ARAMIS 2D DIC system
consisted of a sensor unit, a sensor controller, a high-performance PC system, and ARAMIS 3D
DIC analysis software. The sensor unit, which featured two 5-megapixel cameras with 12-mm
(wide field of view) and 50-mm (narrow field of view) focal length lenses, a laser pointer, and
two adjustable LED spotlights mounted on a circular support bar. Figures D-1, D-2, and D-5 —
D-8 present von Mises strain of Panels 7-11 during respective loadings noted in the figures, from
the NFOV DIC system. Figures D-3 and D-4 present axial strain during fatigue loading of Panel
8 from NFOV and WFOV DIC systems, respectively.
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Figure D-1. Panel 7 DIC results (von-Mises) during residual strength test
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Figure D-2. Panel 8 DIC results (von-Mises) during residual strength test



0 Cycles 12,000 Cycles 24,000 Cycles

olele

36,000 Cycles
'

48, 000 Cycles

OC

84,000 Cycles 96,000 Cycles

r t‘
- Epsilon X

60,000 Cycles
il

72,000 Cycles

108,000 Cycles 5 120,000 Cycles 132,000 Cycles il
- - -

. R -~ 6000

5250

4500

- - - .

144,000 Cycles 156,000 Cycles 165,000 Cycles 3000
N ™ - >

2250

1500

750

- - - 0

Figure D-3. Panel 8 DIC NFOV results (axial strains) during fatigue at SL strain level
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Figure D-4. Panel 8 DIC WFOV results (axial strains) during fatigue at SL strain level
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Figure D-5. Panel 9 DIC results (von-Mises) during residual strength test, percent load of load
increment 1
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Figure D-6. Panel 9 DIC results (von-Mises) during residual strength test, percent of patch failure load
during load increment 1la
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Figure D-7. Panel 10 DIC results (von-Mises) during residual strength test
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Figure D-8. Panel 11 DIC results (von-Mises) during residual strength test

D-9



E  Visual Results

Provided in this appendix are post-failure visual results after residual strength loading of the
double-sided scarf panels.
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Figure E-2. Panel 7 net section failure, external surface

Figure E-1. Panel 7 scarf failure, internal surface
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Figure E-4. Panel 8 scarf failure, internal surface



Figure E-6. Panel 9 (a) patch failure, external, (b) focused patch failure

Figure E-5. Panel 9 (a) patch failure, internal surface, (b) focused patch failure




Figure E-7. Panel 10 patch and net section failure, external surface

Figure E-8. Panel 10 patch and net section failure, internal surface



Figure E-10. Panel 11 patch and net section failure, internal surface



F  Flash Thermography Results

Provided in this appendix are flash thermography results captured throughout residual strength
loading of Panels 7, 8, and fatigue loading of Panel 8. Note, Panels 9-11 are omitted from this
appendix, no thermography results were recorded before catastrophic final failure.
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Figure F-2. Flash thermography timeline of Panel 7 RST, as percent of final load
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Figure F-1. Flash thermography timeline of Panel 8 RST as percent of final load
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Figure F-3. Flash thermography of Panel 8 fatigue, TSR 2 skip
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Figure F-4. Flash thermography of Panel 8 fatigue, TSR 5 skip
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Figure F-5. Flash thermography of Panel 8 fatigue, TSR 10 skip
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